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ABSTRACT 
Introduction 

In this article we construct a simulation of a virtual agent which is equipped with a predictive model of its 

environment and which operates based on the free energy principle to minimize prediction error. The agent is 

capable of perceiving a landscape of multiple affordances for action in the environment, and selects behaviors 

towards those affordances based on its internal needs and its relation to certain facets of the environment. 

Methods 

Through the use of a hierarchical model, the agent is endowed with the ability to choose high level behaviors 

which stabilize its actions, mid level behaviors which respond appropriately to affordances, and low level 

actions which modify action online. 

Results 

We demonstrate the ability of the agent to engage in foraging behavior based on free energy minimization. The 

agent is shown to balance multiple conflicting needs by responding to appropriate affordances in appropriate 

contexts. The agent is further shown to dynamically adjust its behavior on the y to respond to obstacles in its 

path. Overall it demonstrates appropriate behavior over multiple timescales. 

Conclusions 

The agent we have introduced engages in probablistic inference of the hidden states and causes of the external 

world, and is led by prediction error minimization to either update its model to be more faithful to the dynamics 

of the world or to execute actions which cause the world to be more in line with its own predictions. Throughout 

the course of prediction making, the agent is influenced by the state of the external environment and its internal 

needs. 

 

Keywords: free energy, affordance competition, predictive processing, adaptive behavior. 

 

I. INTRODUCTION  
In this article we give an account of a rational agent capable of foraging in a virtual environment in order to 

fulfill its internal needs. To do this, we rely on ideas from the free energy principle (FEP) to construct an agent 

which behaves so as to minimize the surprise of the world, by sampling sensory states in a manner which leads 

to predictable outcomes. The agent is equipped with a generative model which encodes a probability distribution 

reflecting the state of certain aspects of the world, as well as a set of `precisions' or inverse variances which 

encodes the uncertainty of each of those aspects. 

 

The agent adapts to the world by minimizing the prediction errors that its model makes about various modalities 

of sensory input, adjusting the internal model parameters dynamically down the gradient of free energy. In 

addition to minimizing prediction errors through perception, the agent can also take actions in the world in order 

to reduce proprioceptive prediction errors by dynamically selecting action down the gradient of free energy 

(active inference). 

 

It is a long-standing question how an organism abiding by FEP is capable of engaging in behaviors that are not 

just `motor reflexes' directly connected to the outside world. Here we rely on the hierarchical aspect of the 

model to encompass the idea of high-level behaviors which are chosen based on the needs of the agent, and 

enacted by influencing the direct interactions the agent has with the world. High-level behaviors can essentially 

act as high-level priors that top-down bias certain actions over others, allowing the agent to focus on managing 

one need at a time even when other needs are depleting. Further, we will discuss how reflex action can take 

place on the sub-behavioral level by allowing the agent to make predictions that it will turn away when its 
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sensors detect an obstacle, while still maintaining higher behavior routines such as foraging and mid-level 

actions such as approaching food. 

 

Another idea we rely on in this article is that of affordances, or possible actions the agent can take in the 

environment, which the agent can perceive and respond to in a rational way. Each affordance is given a salience 

and mutually exclusive affordances are competed against one another, eventually leading to a winning 

affordance or set of affordances which the agent can respond to and thus satisfy its needs. In this way our 

account is compatible with the affordance competition hypothesis [1], which we believe is a key idea for 

building intelligent agents capable of traversing complex environments, as we have discussed in previous work 

[2],[3]. 

 

In the rest of this article we will describe the agent in question which builds upon the previous ideas and is 

responsive to aspects of a virtual environment which are relevant to its needs. We base our model loosely on 

that given in [4], with the main difference that instead of a preset sequence of salient features, our agent 

responds dynamically to the actual aspects of the environment, their salience dictated by their relation to the 

agent's needs and its location in the world. In this way we adopt a relation-based definition of affordances as 

found in [5], which relies on both aspects of the environment and the agent itself. Through the aforementioned 

competition process, we ensure that the agent's response to affordances is not completely automatic but rather 

flexible and situation dependent [6]. 

 

The virtual environment in which the agent is placed presents a `landscape of affordances [7]. This landscape 

can be interacted with by the agent as it makes predictions to which aspects it will respond to. For example, 

when experiencing thirst the agent will predict it will approach water, and this will lead to the agent taking this 

action in order to reduce the prediction error that would follow if it did not. 

 

At some levels of the behavior hierarchy of the agent, there is competition between alternate possibilities, 

whereas at the lowest levels the actions taken are practically deterministic as they have been fully contextualized 

to the point where there is only a single rational choice. The idea of incremental contextualization of behavior to 

reduce the myriad choices for action available in an environment to routine or reflex action has been covered 

previously in [2], and we believe this is a key method for realizing competent behavior in complex 

environments. The result is an adaptive agent which is capable of fulfilling its needs in a dynamic way based on 

the state of the changing environment and its relation to it, and which does so based on the underlying principle 

of free energy minimization. 

 

II. METHODS 
2.1 Free energy and active Inference 

We develop an agent with a generative model of the world which can predict the dynamics of the hidden state 

and hidden causes of the external environment. Through reduction of the prediction error of this model over 

time, the agent essentially adapts itself to the environment. The way this works in practice is by minimizing free 

energy by either updating the state of the model to better reflect the outside world (perception), or through active 

inference, enacting proprioceptive prediction errors in the world to better bring it in line with the prediction 

(action). Free energy itself is an upper bound on the surprise of the encountered sensory states, and minimizing 

it leads the agent to minimize the amount of possible (probabilistic) states of the world it has to entertain. From 

an ecological point of view, this prevents the agent from becoming a fish out of water, and allows it to maintain 

its homeostatic needs' within a viable range. 

 

In the simulations we carry out in this article, we use a hierarchical, dynamic generative model to form 

predictions and actions which reduce free energy. A key property of this model is that it assumes the probability 

density function over hidden states is Gaussian, thus only the expectation of the density needs to be manipulated 

(known as the Laplace assumption). The dynamical change of the internal state and executed action over time 

can be formalized in terms of a perception and action equation respectively, as shown below. Here we see that 

the internal state m and action a descend the gradient of free energy From, itself calculated based on sensory 

input s and the state µ 
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Here the D operator takes as input a variable in generalized coordinates of motion (noted by the tilde notation) 

and returns the generalized motion as follows: 
 

  
The exact formulation of the equations in (1) depend on the generative model itself, as we describe below 

 
2.2 The generative model 

The generative model describes the dynamics of the internal state of the model as defined by the function f , as 

well as the causal link between levels of the model defined by the function g, which at the lowest level also 

produces the sensory prediction s(t) at each time step t. ω constitutes noise at each level of the hierarchy and has 

amplitude of 1/Π(i,x) , 1/Π(i,v) for hidden state and hidden cause dynamics respectively. Here we can see how 

the hidden state x is turned into a cause v(i − 1) for the previous layer via transformation by the function g(i). 

                             (3) 

 

On each time step, the model produces a prediction at each level i about the (expectation of) the hidden state µx 

and hidden cause µv. These are then compared to the actual conditional expectations µ˜ of the model (or sensory 

input at the bottom level) to form the following prediction errors: 

                                                                    (4) 

These prediction errors are then used to update the model as follows: 

        (5) 
 

A full explanation on how free energy minimization and hierarchical message passing works can be found in 

[8],[9], [10]. The crux of the generative model lies in the functions f and g, which determine the dynamics of the 

internal state and the sensory predictions generated from this state. The format of the generative model 

employed in this article lets the agent make predictions which allow it to respond to a subset of the affordances 

for action in the environment based on internal needs and the current relation of the agent to the environment 

(e.g. distance to each affordance, current actions it is already performing). The dynamics of the internal state in 

our model will thus rely on two major features: competing affordances, and response to those winning 

affordances by choosing behavior. 
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2.3 Affordance Competition 

The affordances which link the skills of the agent to facets of the environment play a large part of the current 

model. The available affordances at any particular time depend on both the state of the environment and the 

agent, and are hierarchical in the sense that they can trigger high-level behaviors such as foraging, resting, and 

finding water, or more immediate actions such as approaching, gripping, and eating. The agent predicts the 

salience of each affordance and competition between each affordances is done via a softmax function which 

finds the most salient affordance(s) at any given time, as shown in the following equation. This competition 

allows the different possibilities for approaching, eating, and drinking to compete against one another. The 

values that make up this matrix can be further biased when high-level behaviors are engaged, and the 

predictions for approach action generated as a result of this competition can also be modified on the fly by 

altering the predicted trajectory to avoid obstacles. As such this competition process lies at the heart of a 

hierarchy of adaptive behavior. 

 

The model takes two parameters actmin and distmax , which denote the minimum value that the state of an 

appendage such as grip must reach before it is considered activated, and the maximum distance within which the 

agent is considered within manipulating range of a part of the environment, respectively. The below matrix 

essentially allows the agent to approach, eat, or drink relevant targets in an appropriate way based on its needs 

and position in the environment. 

 

                                                                                                                                                                 (6) 

 
2.4 Taking action through prediction 

Here we explain how the agent can select and modify predictions to take both high and low-level actions based 

on the winning affordances and the agent’s own internal needs. 

 

2.4.1 Top-level: behavior selection 

Our agent is attributed 3 primary needs: nutrition, hydration, and rest. These values decrease linearly over time. 

The second level of the model infers the state of these needs through a causal link with the first level of the 

model, and uses these inferred values to predict engagement in high-level behaviors depending on which of 

these needs is the most pressing as follows. These high-level behaviors play a role in stabilizing the activity of 

the agent so that it can maintain all of its required needs, as will become evident in the experiments to follow. 

The high-level behavior is given a degree of hysteresis in order to stabilize activity of the agent. 
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                                           (7) 

 

2.4.2 Mid-level: action selection 

At this level the most complex form of competition is undertaken, as the agent decides which target in the 

environment to approach, eat, or drink. Once the affordances have been reduced to a winner or small set of 

winners as shown in equation (6), the agent selects basic actions in response to these most salient affordances, 

which could also be called ‘solicitations’ [7]. When engaging in approach behavior, the salience-weighted 

average location of considered targets, target global, is approached. Along the way the agent will eventually 

favor one target over the others, thus narrowing down the winners to a single target in an efficient way. This 

form of incremental decision-making which takes into account multiple targets in parallel reflects the 

psychological data [11] and can be seen as a way to take optimal and adaptive actions based on indeterminate 

information which is updated in an online fashion. Further, when choosing to lie down, close its grip, or open its 

mouth, the agent relies not only on the immediate prediction of salience of the affordance but also the actual 

state of the environment (e.g. distance to the target). This can be seen as a sort of ‘low-level’ affordance check, 

which negates grasping at thin air or lying down in dangerous areas, even if these actions are momentarily 

entertained at higher levels. 

 

(8) 

 
2.4.3 Low-level: obstacle avoidance 

At this level the agent’s body is equipped with two proximity sensors on the left and right of its head which can 

detect nearby obstacles. These values are processed by the agent as it maneuvers toward a goal and change its 

proprioceptive predictions at the bottom layer of the model in an online fashion by rotating the approach vector 

away from the sensed obstacle as follows. 
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(9) 

 

Now that we have described the generative model, we will describe the complementary simulation of the 

external process which acts as the ‘external environment and reacts to the agent”s actions, providing sensory 

feedback at each time step. Further, a depiction of the content of the external process and generative model can 

be found in Figure 1. 

 

 
Figure 1. The generative model and external process 

 

(Left) The external process which simulates a real environment with several food pellets, a water pool, a home 

location, and obstacles, each with a physical location. The agent also has several variables related to its physical 

apparatus: body position, grip position, mouth position, and whether it is lieing down in a rest position. Further, 

the external process has an extra variable xgrasp which stores whether the agent is grasping a particular pellet. 

The physical or ’real’ set of needs of the agent are also external, and the agent must infer them along with the 

other external variables it makes predictions about. (Right) The generative model, consisting of two layers. 

The top layer selects a high-level behavior based on the state of the agents needs. The bottom layer predicts 

approach actions, eating actions, and gripping actions based on the top-level behavior and inferred needs. 
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Approach trajectories can be modified as low-level obstacle avoidance. The proprioceptive predictions made by 

the bottom layer are transformed into action in the external process. The external process is dynamically updated 

and returns a sensory input back to the model. 

 

2.5 External process 

Sensory input from the external environment is simulated using a single layer based on the following equations, 

which takes in actions a from the generative model and uses them to update the external process. Essentially, 

actions are proprioceptive prediction errors which update each part of the agent’s physical apparatus such as its 

body location, mouth, gripper, and whether it is lying down to rest. Further, the external or physical equivalent 

of the needs of the agent are updated based on their natural decay and consummative activity of the agent. 

Lastly, the location of food items in the world are updated depending on whether the agent is pulling them. 

Whether or not the food items are being pulled is determined by the external variable xgrasp , which acts as a 

placeholder for the dynamics of the food being held in the gripper of the agent. A noise term ω(1, x) is added to 

the dynamics at each timestep, and finally the actual state of the external environment is returned to the 

generative model in the form of sensory input s, which for simplicity is just the external state itself plus a noise 

term, although this could take any form without changing the results drastically as long as the generative 

model”s g function adequately represents the transformation from external state to sensory input. 

 

Further, the external process is governed by the following rules: 

• The agent must take food back home in order to eat it. 

• The agent must open its mouth in the range of food to eat it. 

• Eaten food cannot be eaten again. 

• The agent must go home and lie down to rest. 

• The agent must be in range of the water pool and open its mouth to drink from it. 

 

Given the above, we define the equations for the external process as follows: 

(10) 
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2.6 Summary 

In this section we have described the format of the generative model and external process employed in the 

experiments to follow. We have shown how the physical appendages of the agent are updated in the external 

process based on actions, which in turn are generated from decisions based on the salience of affordances for 

action in the environment. These affordances are sensitive to changes in the needs of the agent, which are 

themselves ‘external’ properties which the agent must infer in order to react to them and preserve a safe 

homeostatic range. We have shown how the agent can generate action through the cooperation of three stages:– 

a high-level behavioral stage (level 2 of the generative model), a mid-level action stage (level 1 of the generative 

model), and an online reflex stage (manipulation of level 1 predictions based on immediate sensor values). Next 

we will show the results of several experiments we undertook to demonstrate how the agent adaptively responds 

to both its internal needs and the state of the external environment by inferring this information and creating 

proprioceptive predictions that turn into action, and also show how and why each stage of the behavioral 

hierarchy is necessary for successful adaptive behavior.  

 

III. RESULTS 
Simulations for the following experiments were ran in MATLAB using the ADEM foraging.m model which we 

developed based on the equations as laid out above, and utilizes Karl Friston’s spm ADEM.m to simulate the 

generative model and sensory input generating process. The latter is part of the SPM software suite (Version 12) 

which can be downloaded from https://www.fil.ion.ucl.ac.uk/spm/software/. All code for the present work can 

be found at https://github.com/khrv/ADEM_foraging. The simulations were each ran for 450 timesteps, with 

 he following parameter values. 

 
Table 1. Parameters for Experiments 

 
 

3.1 Experiment 1: Reactionary behavior only 

In this experiment we demonstrate the ability of the agent to forage in the virtual environment with solely mid-

level behavior which reacts directly to the current state of the agent’s needs. Figure 2 shows the results of the 

experiment. 
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 A(I) 

 
A(II) 
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A(III) 

Figure 2. Results of Experiment 1 

 

A. Snapshots of agent behavior. (i) Agent (purple square) heads from Home towards Food4 (salient food in red, 

non-salient food in green). (ii) Agent has taken two food pellets home and eaten them (eaten food shown as 

small black dots). Agent initially heads for Water but gives up and heads towards Food2 instead. (iii) Agent has 

brought back and eaten Food2. Agent heads towards Food5, ignoring its thirst. B (Top) Salience of each food 

item. B (Center) Proprioceptive state of each body part. Grip in blue, Mouth in red, Lie in yellow. B (Bottom) 

State of each need. Nutrition in red, Hydration in blue, Rest in yellow. C Salience of approaching each target. 
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(B) 

 
(C) 
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Here we immediately see that the experiment lasted until timestep t=350, at which point the agent died of thirst. 

Let us investigate why this happened. Figure 2A shows the general trajectory taken by the agent, which displays 

behavior concentrated on foraging of food and rest but with a general neglect of drinking water. C shows the 

general order in which the agent approaches each target. The agent first heads toward Food4, and proprioceptive 

results in the second row of B show us that the agent indeed gripped food at around t=80, at which point C 

shows us that the agent again heads for Home. Upon reaching Home the proprioceptive results show that the 

agent lies down, and indeed at around t=90 the Rest need is replenished. Next the agent opens its mouth to eat 

its recovered food pellet, and its Nutrition need is replenished. By this point the agent’s Hydration has decreased 

a lot and sure enough the agent approaches the Water target at t=100. However due to the Nutrition need 

decreasing at a faster rate than Hydration (see Table 1), the agent becomes hungry mid-approach and gives up 

fetching water in order to continue foraging. The agent thus continues grabbing food again until dying of thirst 

at t=350. We thus see that the inability of the agent to focus on the task of obtaining water leads to its demise. 

Although it is effectively pursuing adaptive behaviors based on its internal needs and the affordances of the 

environment, it does so in a short-sighted way. It is able to juggle the Rest and Nutrition needs somewhat 

successfully as these needs both require sustaining at the Home location, however the Water location is out of 

the way and requires an extra degree of focus in order to coordinate its approach with the other behavior. 

 

3.2 Experiment 2: high-level behavior 

 
A(I) 
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A(II) 

 
A(III) 
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Figure 3. Results of Experiment 2 

 

A. Snapshots of agent behavior. (i) Agent moves towards Food4. (ii) Agent has recovered and eaten several 

food pellets and visits the water pool. (iii) Agent has satiated both hunger and thirst and so goes Home to rest. B 

(top) Salience of each high-level behavior. Foraging in red, Drinking in blue, Sleeping in yellow. B (lower 

rows), C: See Figure 2. 

 
In this experiment we allow the agent to engage in high-level behaviors (level 2 of the model), which act as 

metastable states on a longer timescale than level 1. The purpose of these behaviors are to focus the agent 

towards fulfilling goals that require it to temporary disregard competing goals. In this case, the acquisition of 

water should take priority over the acquisition of food when Hydration is low even though the need for Nutrition 

is constantly attempting to gain the agent’s attention. Figure 3B (top row) shows the salience of each high-level 

behavior, with the agent choosing to engage in seeking of food, water, and rest in order. Specifically, Foraging 

behavior is dominant for the first 150 timesteps, followed by Drinking behavior over the next 50 timesteps, and 

Sleeping behavior over the following 50 timesteps. From the last row of Figure 3B we indeed see that Nutrition, 

Hydration, and Rest are all balanced for the duration of the experiment. As outlined in Figure 3C we can see that 

the agent adequately takes turns in approaching food, water, and home targets as necessary to sustain its needs. 

Further, Figure 3A shows this process as it plays out graphically, starting with 3Ai at timestep t=48, where the 

agent approaches Food4. Following this in 3Aii, the agent has brought the food back home and eaten it and now 

proceeds to the water pool to drink at t=202. Finally in 3Aiii at t=250, after having both eaten and drank, the 

agent returns home to rest. Thus we see a much more balanced set of behaviors that equally sustain each need at 

viable levels. 

 

 
(B) 
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(C) 

 

3.3 Experiment 3: Obstacle Avoidance 

 
A(I) 
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A(II) 

A(III) 
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(B) 

Figure 4. Results of Experiment 3 

 

A. Snapshots of agent behavior. (i) Agent heads for Food4 while avoiding first obstacle (larger black circle). (ii) 

Agent has eaten several food pellets and now reaches water after avoiding another obstacle. (iii) Agent avoids 

obstacle while heading for Food2. B, C: See Figure 2. 

 

In this experiment we again allow the agent to engage in high-level behavior and balance its needs as in 

Experiment 2, however we now place obstacles in the environment. As seen from Figure 4B and 4C, the agent is 

able to respond to the affordances in the environment without any noticeable detriment and continue high-level 

behaviors as if the obstacles were not there. However as seen from Figure 4A, we see that in reality the agent is 

effectively avoiding obstacles at the motor reflex level. We see the agent maneuver around each obstacle while 

continuing to approach each appropriate target and engage in foraging, drinking, and resting. It is of note that 

these micro-actions have not been preprogrammed, but dynamically emerge as the agent responds to affordances 

for behavior at the top level, approaches and interacts with targets at the mid-level, and engages in immediate 

navigation around obstacles at the bottom level. As the agent deals with these obstacles in an unreflective and 

successful way, it never has to change its strategy and so can navigate its environment while at the same time 

deliberately planning which targets to approach next based on its needs. This shows how seemingly intelligent 

behavior can come about from a very simple set of behavioral tendencies, organized by metastable states at 

higher levels and executed by dynamic embodied navigation at lower motor levels. 

http://www.ijesrt.com/


  ISSN: 2277-9655 

[Harvey * et al., 7(8): August, 2018]  Impact Factor: 5.164 

IC™ Value: 3.00  CODEN: IJESS7 

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology 

 [467] 

 
(C) 

 

IV. CONCLUSIONS 
In this article we have constructed a foraging agent based on ideas from FEP and affordance competition. The 

agent we have introduced engages in probablistic inference of the hidden states and causes of the external world, 

and is led by prediction error minimization to either update its model to be more faithful to the dynamics of the 

world or to execute actions which cause the world to be more in line with its own predictions. Throughout the 

course of this prediction making, the agent is influenced further by the state of the external environment and its 

internal needs. At each step the agent is juggling multiple competing affordances for action, each possibly 

leading to fulfilment of a different need. The influence of these affordances ultimately leads to predictions about 

the proprioceptive state of each of the agent’s appendages, and the ensuing actions lead to adaptive behavior in 

the environment. 

 

4.1 Perceiving and responding to affordances 

The agent is tasked with not only inferring the personal relevance of each affordance for action available, but 

also their appropriateness at any paritcular moment. The way this comes about for the agent, although 

implemented here in an almost rule-like fashion, can be thought of as follows. Phenomenologically speaking the 

agent is in a sense’directly perceiving’ the affordances themselves [12], for example through the Salience matrix 

in (6). From this viewpoint, the agent is not engaging in a series of cognitive calculations, but is in fact directly 

making predictions about its own behavior based on the immediate salience of affordances. For example, there 

is no need to consider the action of grasping when there is no food around, because that affordance is not 

supported by the present environment. The agent simply has no inclination to grasp at thin air, neither does it 

have the inclination to grasp at food when it is not hungry, as that is not an adaptive strategy for need reduction. 

In our implementation these low-level ’appendage’ movements are implemented in a rather deterministic 

fashion, due to the simplicity of the simulation. In a more detailed simulation however, the ideas laid out in this 

article could be expanded to be more dynamic at the appendage/motor level also, relying more on the low-level 

physical properties of having a body. This would give credence to the idea of the ’embodied mind’ [13], as 

heeding affordances could be done on a sub-behavior motor level as an ’embodied decision’ [14]. We have 
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attempted to implement the idea of sub-behavioral level affordances in our paper through the agent’s ability to 

avoid obstacles, which in practice is implemented as manipulation of low-level trajectory predictions based on 

sensors that detect the obstacles in the environment. In a future expansion of the present theory we believe we 

could replace its more deterministic aspects with this kind of dynamic ’prediction alteration’ on multiple 

behavioral levels based on the present affordances and their salience. Such dynamic interaction between 

environment and predictive model woud likely require a more complex simulated body, as the intelligence of 

the agent begins to be offloaded into the body and environment in true embodied fashion. 

 
4.2 The behavior hierarchy 

Through our experiments we found that it is important for the agent not just to utilize salient affordances in a 

greedy myopic way, but rather to focus attention on restoring particular needs at a time. The way in which our 

agent does this is through the use of high-level behaviors which take on a metastable dynamic and change at a 

slower rate than the underlying actions, thus stabilizing the lower level and ensuring that the agent does not 

respond to the environment in an erratic, overly reflex-like fashion. We demonstrated how the agent is capable 

of balancing three separate needs: nutrition, hydration, and rest, each with its own particular affordances that 

required a particular behavioral response from the agent. Namely, the agent was able to acquire food and bring it 

back to its nest to consume, approach the water bath in order to drink, and approach the nest and lie down in it in 

order to sleep. While the set of needs employed here is rather basic, we believe that the same principle of 

hierarchical behavioral management could apply to more complex agents, allotted with hierarchical generative 

models split into layers determining the predictions made at each time scale. Additionally, as outlined above, the 

lower levels could have a more in-depth relation to the agent’s body and external environment. In this way we 

could emulate the sort of low-level ’reflex’ to high-level ’cognitive’ progression of behavior as is believed to 

exist in animals, and in particular 

human beings. 

 
4.3 Dealing with the unexpected 

In the present simulation, the agent does not have to deal with hugely unexpected situations. For example, while 

it may drop food as it is carrying it and approach it again to pick it back up, the behavior still remains within the 

realm of what Heidegger would call ’readiness-to-hand ’ [15], or purely unreflective behavior. However, when 

the truly unexpected happens (say, the agent is caught at a wall of obstacles and cannot simply maneuver around 

them), it would be necessary to send the prediction error which is not dealt with at the action level up the 

hierarchy so that it may be resolved by changing behavior at a higher level. In this way we see the beginnings of 

a more detached or ’present-at-hand ’ style of behavior, which we believe is key to truly intelligent agents that 

are capable of forming  mid to long term plans and dealing with the unexpected in a reasonable and adaptive 

way. Nevertheless we believe we have provided an interesting starting point for developing agents based on the 

FEP which can respond to aspects of the environment and their own physical body in a dynamic and adaptive 

way, while adeptly managing multiple competing needs in a balanced fashion. 
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